skip to main content


Search for: All records

Creators/Authors contains: "van Doorn, Natalie S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The complex effects of global environmental changes on ecosystems result from the interaction of multiple stressors, their direct impacts on species and their indirect impacts on species interactions. Air pollution (and resulting depletion of soil base cations) and biotic invasion (e.g. beech bark disease [BBD] complex) are two stressors that are affecting the foundational tree species of northern hardwood forests, sugar maple and American beech, in northeastern North America.

    At the Hubbard Brook Experimental Forest in New Hampshire, a watershed‐scale calcium (Ca) addition in 1999 restored soil Ca that had been lost as a result of acid deposition in a maple‐beech forest that was severely affected by BBD beginning in the 1970s. We present historic data from the reference watershed for BBD progression, 20 years of comparative forest data from the treated and reference watersheds, and tree demographic rates for the most recent decade. We hypothesized that mitigation of soil acidification on the treated watershed in the presence of BBD would favour improved performance of sugar maple, a species that is particularly sensitive to base cation depletion.

    We observed significant responses of seed production, seedling bank composition, sapling survival and recruitment, and tree mortality and growth to the restoration of soil Ca, indicating that acid rain depletion of soil base cations has influenced demographic rates of maple and beech. Overall, the reduced performance of sugar maple on acidified soils may indirectly favour the persistence of diseased beech trees and a greater abundance of beech vegetative sprouts, effectively promoting the chronic presence of severe BBD in the population.

    Synthesis. The shifting conditions created by global change have altered long‐term demographic rates and may thereby impact competitive interactions in the current centre of these species ranges and have more profound implications for species persistence and migration potential than previously anticipated.

     
    more » « less
  2. Abstract

    Ecosystems are changing in complex and unpredictable ways, and analysis of these changes is facilitated by coordinated, long‐term research. Meeting diverse societal needs requires an understanding of what populations and communities will be dominant in 20, 50, and 100 yr. This paper is a product of a synthesis effort of the U.S. National Science Foundation funded Long‐Term Ecological Research (LTER) network addressing the LTER core research area of populations and communities. This analysis revealed that each LTER site had at least one compelling story about what their site would look like in 50 or 100 yr. As the stories were prepared, themes emerged, and the stories were grouped into papers along five themes for this special issue: state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the resilience theme and includes stories from the Baltimore (urban), Hubbard Brook (northern hardwood forest), Andrews (temperate rain forest), Moorea (coral reef), Cedar Creek (grassland), and North Temperate Lakes (lakes) sites. The concept of resilience (the capacity of a system to maintain structure and processes in the face of disturbance) is an old topic that has seen a resurgence of interest as the nature and extent of global environmental change have intensified. The stories we present here show the power of long‐term manipulation experiments (Cedar Creek), the value of long‐term monitoring of forests in both natural (Andrews, Hubbard Brook) and urban settings (Baltimore), and insights that can be gained from modeling and/or experimental approaches paired with long‐term observations (North Temperate Lakes, Moorea). Three main conclusions emerge from the analysis: (1) Resilience research has matured over the past 40 yr of the LTER program; (2) there are many examples of high resilience among the ecosystems in the LTER network; (3) there are also many warning signs of declining resilience of the ecosystems we study. These stories highlight the need for long‐term studies to address this complex topic and show how the diversity of sites within the LTER network facilitates the emergence of overarching concepts about this important driver of ecosystem structure, function, services, and futures.

     
    more » « less